Pesticide Risk Reduction Programme – Ethiopia Data gathering: Meteo and soil data Mechteld ter Horst, Paulien Adriaanse, Jos Boesten, Alterra

joint collaborative programme on pesticide registration and post-registration

Towards a sustainable use of pesticides in Africa

Definition of gw protection goals

Outline

- Meteo data
- Soil data

Available data (daily)

- Measured data (stations) \rightarrow
 - NNDC climate data online (GSOD)
 - Freely downloadable
 - among others: precipitation and temperature
 - problem: not all data necessary, no uninterrupted series (20 years needed)

Available data (daily)

• Measured data \rightarrow not adequate, therefore model data

• Model data:

- CRU_ERA40 0.5° 1961-1990 only precipitation and temp
- CPC-RFE 0.1 ° 1983-now
- TRMM3B42 0.25 ° 1998-now
- ERA-interim 0.75 ° 1998-now
- only precipitation
- only precipitation
 - precipitation less accurate

• ERA-interim \rightarrow bought from

- Familiar with ERA-interim -> partner in the MARS project (Monitoring agricultural resources world wide)
 - Both colleagues from Alterra and Joint Research Centre in Italy referred to MeteoConsult for the meteodata
- Located in Wageningen
- They calculated from the basic data:
 - Evapotranspiration
 - Open pan evaporation
 - Annual precipitation sum
 - Annual average precipitation over ca 30 years

- ERA-interim for each gridpoint:
 - id, longitude, latitude, altitude
 - daily data of: Pre

Precipitation	(mm d ⁻¹)
Reference evaporation	(mm d ⁻¹)
Open pan evaporation	(mm d ⁻¹)
Global radiation	(kJ m ⁻² d ⁻¹)
Humidity	(kPa)
Wind speed	(m d ⁻¹)
Air temperature (daily avg, min and max)	(°C)
Volumetric soil water layer 1-4	(m3 m-3)
Runoff	(mm d ⁻¹)
Annual precipitation sum	(mm y⁻¹)
Annual average precipitation	(mm y⁻¹)

– 3 hourly data of precipitation

• Annual average precipitation

- GIS expertise needed for this workshop to make overlays in ARC-GIS.
- ISRIC World Soil Information is an independent foundation, located in Wageningen
- Willing to help on a short notice
- Data used: Harmonized World Soil Database images (5.6 km resolution)

Harmonized World Soil Database Organic carbon (from 0 – 3%)

Harmonized World Soil Database pH (from 6 – 7.8)

Harmonized World Soil Database Bulk density (from 1.3 – 1.8 g/cm³)

Data gathering

Meteo data for Ethiopia

ERA – interim background

- Soil
 - Four layers (0.07m, 0.21m, 0.72m, 1.89m
 - Bottom boundary condition: free drainage
 - $\Theta_{sat} = 0.323 \text{ m}^3 \text{m}^{-3}$ $\Theta_{wp} = 0.171 \text{ m}^3 \text{m}^{-3}$
- Soil water flow
 - Richards equation
- Runoff
 - if throughfall > max. infiltration rate → excess precipitation = runoff
 - Only runoff when soil is saturated

3. Meteorological data

