Mission report (WP B2.1 /HH+Env3)

In the framework of PRRP- Ethiopia

Workshop at Ctgb-NL, 10-14 Dec 2012: Proposed evaluation tested with pilot compounds (Human Health and Environment)

Names : Alemayehu Woldeamanual, Hiwot Lemma, Yerasworke Yilma, Haimanot Abebe (APHRD), Marloes Busschers, Caroline van der Schoor, Peter van Vliet (Ctgb), Mechteld ter Horst and Paulien Adriaanse (Alterra)

Pesticide Risk Reduction Programme - Ethiopia

1. Introduction

The goal of one of the work packages within PRRP-Ethiopia (WP B) is to develop technical and scientific capacity in Ethiopia, and in particular at APHRD, to ensure sound pesticide management in Ethiopia at pesticide registration stage. Technical assistance for this work package is provided by amongst others the Dutch Board for the Authorisation of Pesticides, Ctgb and Alterra.

The work package (WP B2.1) focuses on developing guidelines and procedures for the human health risk assessment, (including occupational and consumer health) as well as environmental risk assessment and to develop the capacity at the APHRD to apply these guidelines and procedures. This has to result in an evaluation manual for the Animal and Plant Health Regulatory Department (APHRD) of the Ministry of Agriculture of Ethiopia. In this workshop the proposed evaluation method was tested for a combination of 6 compounds and crops, that have been identified as possibly bearing risks for drinking water production or consumers:

- 1. Dimethoate, for use on barley and cabbage
- 2. Endosulfan, for use on maize and cotton
- 3. Deltamethrin for use on cotton, miaze, flowers and cabbage
- 4. 2-4 D for use on teff and maize
- 5. B-cyfluthrin for use on cotton , maize, flowers and cabbage (was replaced by lamba-cyhalothrin, because dossier of B-cyfluthrin was very small)
- 6. Metalaxyl/mancozeb for use on potato, onion and tomato

2. Objectives

The mission has the following goals and objectives.

Goal:

- To finalise the proposed evaluation procedure for Ethiopia on risks concerning human health and environment, including the relevant exposure models and other software.
- To let the APHRD gain experience with this proposed evaluation procedure
- To extend the draft evaluation manual in close cooperation between Ctgb and APHRD.

Objectives:

Human health (occupational health)

- 1. Propose an evaluation procedure for occupational health risk assessment and test it for a number of pilot compounds *(act 1.4 and act. 5.2 start)*
- 2. Finalise the methodology and exposure assessment tools for occupational health *(act 1.2)*

- 3. Exercise setting and quality assessment of the toxicity data of the pilot compounds needed to perform the human health risk assessment *(act 3.1)*
- 4. Finalise nationally applicable criteria for the acceptability of pesticides in Ethiopia (including human toxicity, labeling and packaging) *(act 3.1)*
- 5. Incorporate the results of 1-4 in the draft evaluation manual (act 5.1 cont.)

MRLs setting and human health (consumer health)

- 1. Propose an evaluation procedure for consumer health risks and test it for a number of pilot compounds *(act 1.4 and act. 5.2 start)*
- 2. Exercise MRL setting and quality assessment for a number of pilot compounds as proposed in the June 2012 workshop, considering their GAP and relevant crops *(act 6.1b)*
- 3. Define the Ethiopian food regime to use in the consumer risk assessment *(act 1.3)*
- 4. Evaluate the MRLs with respect to export of crops (compliance with MRLs of importing countries ?) *(act. 6.1b)*
- 5. Extend the draft evaluation manual with the results of activities 1-4 *(act 5.1 cont.)*

Environmental risk assessment

- 1. Present the proposed evaluation procedure, incl risk classification for the various protection goals and test it for a number of pilot compounds and protection goals (*act 1.4 and act. 5.2 start*)
- 2. Present and exercise with the current PRIMET version (to be adapted for Ethiopia) *(act.1.3)*
- 3. Present the exposure assessment procedure for groundwater and surface water as developed in the November 2012 workshop *(act.1.3)*
- 4. Extend the draft evaluation manual with the results of activity 1 *(act 5.1 cont.).*

3. Results of activities

The following results have been executed during the mission:

Human health (occupational health)

- 1. General training on criteria and methodologies for an evaluation procedure for occupational health risk assessment and the quality of studies *(act 1 and 3)*
- 2. Training on the quality assessment of the toxicity data of several of the pilot compounds and setting of reference values needed to perform the human health risk assessment *(act 3.1)*
- 3. Training on the use of exposure models for operator, worker and bystander for several of the pilot compounds and scenarios *(act 1.1d)*
- 4. Discussion on nationally applicable criteria for the acceptability of pesticides in Ethiopia (including human toxicity, labeling and packaging) *(act 3.1)*

5. Extend the draft evaluation manual with the insights gained during the workshop in December *(act 5.1)*

MRLs setting and human health (consumer health)

- 1. General training on international criteria and methodologies for residue evaluation and the quality of studies (*act. 1 and act. 3*)
- 2. Exercise MRL setting using the OECD MRL calculator (act. 6.1.b)
- 3. Training on calculation of TMDI for different pesticides (*act. 1.3.a*)
- 4. Training on calculation of NESTI for different pesticides (act. 1.3.a)
- 5. Evaluate the MRLs with respect to export of crops (compliance with MRLs of importing countries) and discussion on European, US and CODEX MRLs *(act. 6.1.a and act. 6.1b)*
- 6. Extend the draft evaluation manual with the insights gained during the workshop in December (act 5.1 and act. 8.3.)

Environmental risk assessment

- 1. General training on criteria and methodologies for an evaluation procedure for the environmental risk assessment , incl. risk classification for the various environmental protection goals *(act 1.4)*
- 2. Tool/model (PRIMET (adapted for Ethiopia)) presented for environmental risk assessment in Ethiopia, incl. exposure assessment in surface water and groundwater (as developed in the November 2012 workshop) (*act 1.3*)
- 3. Training on the use of the environmental risk assessment procedures for the various environmental protection goals for several of the pilot compounds, including exercising with the adapted PRIMET version (*act 1.4 and act. 5.2 start*)
- 4. Extend the draft evaluation manual with the insights gained during the workshop in December (act 5.1).

4. Deliverables

- 1. Ethiopian staff trained on principles of occupational health and residue evaluation, consumer exposure and MRL setting and environmental risk assessment (*(HH+Env start act 5.2)*
- 2. Writing draft chapters in Manual for the evaluation of dossiers with respect to human health and environment *(HH+Env cont. act 5.1)*
- 3. Agreement on the methodology and (operator, worker, flagman and bystander and consumer) exposure assessment tools that will be used in Ethiopia *(HH act. 1.1)*
- 4. Ethiopian staff acquainted with selected tools for exposure assessment (human health) *(HH act.1.2)*
- 5. Draft national applicable criteria for the acceptability of pesticides agreed (human health aspects) *(HH act 3.1)*
- 6. A start has been made towards an agreement on which existing MRLs will be used and which MRLs need to be developed *(HH act 6.1b)*

- 7. Decision on which food regime to use for Ethiopia (*HH act. 1.3*)
- 8. Evaluation procedure for decision making presented and accepted (environment) (*Env act 1.4*)
- 9. Tool/model presented for environmental risk assessment in Ethiopia, incl exposure assessment in surface water and groundwater *(Env act 1.3)*
- 10.Copies of all presentations given and documents provided during the training workshop.
- 11. This report of the training workshop in the form of a Back to Office/Mission Report in the standard format of the PRRP Ethiopia project. This BtOR will include all activities, progress and conclusions of the workshop as well as recommendations for continuation of the evaluation work on Human Health and Environment of PRRP Ethiopia.

5. Organizations and persons met during mission

Four participants of Animal and Plant Health Regulatory Directorate (APHRD) and Paulien Adriaanse (Alterra) joined the workshops and discussions. Workshops regarding consumer risk assessment and MRLs, toxicology and occupational exposure and environmental risk assessment were given by employees of Ctgb and by Alterra (environmental risk assessment only).

Dr Haimanot of APHRD and Paul de Boer of Linge Agroconsultancy met to discuss issues of other WPs of PRRP Ethiopia.

Organization / person	Contact information (address, e-mail, telephone
	number, etc)
	Ctgb
	Stadsbrink 5
	NL-6707 AA Wageningen
	The Netherlands
	Tel: +31 317 471 810
	Fax: +31 317 471 899
Ctgb, Mrs. Marloes	Marloes.busschers@ctgb.nl
Busschers, MSc	Human health (occupational health)
Ctgb, Mr. Peter van Vliet,	Peter.vvliet@ctgb.nl
MSc	Environmental risk assessment
Ctgb, Mrs. Caroline van	Caroline.vdschoor@ctgb.nl
der Schoor	MRLs setting and human health (consumer health)
	APHRD
Mr. Alemayehu	alemaworke1958@gmail.com
Woldeamanual	_
Dr. Haimanot Abebe	haimanotabebe@Yahoo.com
Hiwot Lemma	
Yerasworke Yilma	
	Alterra, Environmental risk assessment

A complete list of participants and their affiliation is presented below.

Mechteld ter Horst	Mechteld.terhorst@wur.nl
Paulien Adriaanse	Paulien.Adriaanse@wur.nl
	Coordinator WP B2.1 PRRP Ethiopia
	Linge Agroconsultancy
Paul de Boer	paul.deboer@lingeagroconsultancy.nl

6. Unsolved issues

Human health (occupational health)

- 1. National data requirements: for several data points the EU, US EPA and others require studies in 2 species, however, it can be argued that at this stage this is too strict for Ethiopia, and for example it is not a data requirement for the WHO/JMPR evaluations.
- 2. The use of Personal Protective Equipment (PPE). PPE can reduce the risk, however, in many cases farmers can or will not use PPE. If, based on the exposure estimation, there is only a safe use expected with the use of PPE, the applicability of this requirement and the risk-benefit analysis will be expert judgment.
- 3. Labeling of the pesticides is only based on WHO classification for acute toxicity. More in depth classification is not discussed yet, but this seems too far-reached at this stage.

MRLs setting and human health (consumer health)

- 1. Extrapolation. Guidance on crop-crop extrapolation for crops cultivated in Ethiopia is not available currently.
- 2. Minimum number of supervised residue trials to be submitted for an application for authorization for a statistically reliable data set. Identifying which crops should be classified as major or minor is also an important factor in this issue. A section discussing this should be added in the Evaluation manual. Possibly residue trials may be combined with the Efficacy trials.
- 3. An Ethiopian consumer intake model is currently not available. Hence, no representative consumer exposure can be performed for the Ethiopian population.

Environmental risk assessment

- 1. A clear picture of the consequences of the chosen draft registration criteria and risk classification criteria is necessary (impact assessment).
- 2. A further adaptation of the PRIMET tool to the Ethiopian situation.
- 3. Waterfowl is not taken into account
 - may be more sensitive?
 - exposure is different
 - sometimes overspray by aerial application.

This need to be discussed in the Evaluation manual

- 4. Some pesticides also for public health: different exposure of the environment (Same Risk Assessment Criteria?) See also links WHO in Tox part of Evaluation manual.
- 5. Labelling of pesticides (treat in Evaluation manual)
- 6. Risk mitigation is to be discussed at next workshop and to be incorporated in the Evaluation manual.

Other unresolved issues:

- 1. Re-registration. Currently, there is no procedure or guidance how to handle re-registrations of authorizations in Ethiopia. Guidance could be provided by in the framework of the PRRP. To be taken up by Harold in WP B.1 ?
- 2. Capacity building of the APHRD office in Addis Ababa. The current capacity within APHRD for risk assessment is very small. It takes about two years to extend the number of people at the APHRD office. Hence, activities should already start now to get the necessary capacity within reasonable time.

7. Actions to be taken / recommendations

Human health (occupational health)

- 1. Further training on occupation health risk assessment for Ethiopian staff of APHRD and other stakeholders.
- 2. Based on further training and experience, the unsolved issue regarding the requirement of studies with 2 species and the use of PPE should be discussed within the APHRD. This could include a risk-benefit assessment, since being too strict will result in a reduction of the authorized pesticides, which may impact the food production.
- 3. How to treat aerial applications?

MRLs setting and human health (consumer health)

- 4. Draft guidance on crop-crop extrapolation regarding pesticide residues
- 5. Draft guidance on minimum number of supervised residue trials to be submitted for an application for authorization.
- 6. A dietary intake model containing food consumption data representing regional Ethiopian diets in the different agro-ecological zones with varying dietary habits for chronic and acute intake assessment. The Ethiopian Health and Nutrition Research Institute (EHNRI) is said to have generated data from food consumption surveys recently.
- 7. Further training on residue evaluation and consumer risk assessment for Ethiopian staff.

Environmental risk assessment

- 8. Further training on environmental risk assessment for Ethiopian staff.
- 9. Making an analysis of the consequences of the chosen draft registration and risk classification criteria on the total package of available pesticides

in Ethiopia. Depending on the results of the analysis it could be necessary to adjust some of the criteria.

- 10.Looking at pesticides used for public health.
- 11.Formalization of the selected protection goals in the Regulation (support from a lawyer of the FAO?)
- 12. To start activities on capacity building of the APHRD office in Addis Ababa, taking into account the long procedure (at least 2 years) to appoint new people

Annex 1: Detailed Program (per day)

Workshop: proposed evaluation tested with pilot compounds (Human Health and Environment) 10-14 December 2012, Wageningen, The Netherlands Venue: Ctgb

Date	Time	Activity	Responsible person
Pesticide Risk Re	eduction Program	nme –Ethiopia, Work package B2.1	
Monday 10 Dec		GENERAL	
10 min	9.00-9.10	Welcome, introduction to each other	Paulien
10 min	9.10-9.20	Short introduction to PRRP and WP B2.1	Alemayehu
10 min	9.20-9.30	Outline and aim of this workshop	Paulien
		MRLs AND CONSUMER HEALTH	
60 min	9:30-10:30	Presentation on residue assessment and MRLs: recap	Caroline
30 min	10.30-11.00	COFFEE BREAK	
20 min	11:00-11:20	Practical: assess the quality of studies	Caroline
		- metabolism	
10 min	11:20-11:30	Practical: residue definition	Caroline
20 min	11:30-11:50	Practical: assess the quality of studies	Caroline
		- supervised residue trial	
20 min	11:50-12:10	Extrapolations	Caroline
20 min	12:10-12:30	Interpolations	Caroline
60 min	12.30-13.30	LUNCH	
40 min	13:30-14:10	Practical: OECD MRL calculator	Caroline
15 min	14:10-14:25	results OECD MRL calculator	Caroline
20 min	14:25-14:45	CODEX MRLs, USDA MRLs and EU MRLs	Caroline
10 min	14:45-14:55	Toxicological reference values	Caroline

35 min	14:55-15:30	Presentation on dietary risk assessment and Ethiopian food regime	Caroline
30 min	15.30-16.00	TEA BREAK	
60 min	16:00-17:00	Practical: Performing dietary risk assessment	Caroline
		END day 1	
Tuesday 11 Dec		CONTINUATION MRLs AND CONSUMER HEALTH	
45 min	9:00-9:45	Practical: Performing dietary risk assessment	Caroline
45 min	9:45-10:30	Discussion and trouble shooting	Caroline
30 min	10.30-11.00	COFFEE BREAK	
		START TOX DATA AND OCCUPATIONAL HEALTH	
90 min	11.00-12.30	Presentation and practical on data requirements, quality of studies, and	Marloes
		reference values	
60 min	12.30-13.30	LUNCH	
120 min	13.30-15.30	Presentation and practical on operator and worker exposure	Marloes
30 min	15.30-16.00	TEA BREAK	
60 min	16:00-17:00	Presentation and practical on operator and worker exposure	Marloes
		END day 2	
	19.30-21.30	DINNER ALL TOGETHER	ALL + Floor
Wednesday 12 Dec		CONTINUATION TOX DATA AND OCCUPATIONAL HEALTH	
90 min	9.00-10.30	Presentation and practical on operator and worker risk assessment	Marloes
30 min	10.30-11.00	COFFEE BREAK	
60 min	11.00-12.00	Discussion and trouble shooting	Marloes
60 min	12.00-13.30	LUNCH	
		START ENVIRONMENT	

	13.30-15.30	Presentation on the proposed evaluation procedure and the risk classification criteria for the different protection goals	Peter
30 min	15.30-16.00	TEA BREAK	
45 min + 15 min	16.00-17.00	Summary of exposure assessment for surface water and groundwater protection goals, as developed in the November 2012 workshop, + discussion	Paulien + all
		End day 3	
Thursday 13 Dec		CONTINUATION ENVIRONMENT	
	9.00-10.00	Presentation of PRIMET for risk assessments	Mechteld
	10.00-12.30	Practical: performing risk assessments for the different protection goals and substances	Peter+Mechteld
60 min	12.30-13.30	LUNCH	
	13.30-15.30	Practical: performing risk assessments for the different protection goals and substances	Peter+Mechteld
30 min	15.30-16.00	TEA BREAK	
	16.00-17.00	Discussion and trouble shooting	Peter+Mechteld
		END day 4	
Friday 14 Dec		DATA REQUIREMENTS + MANUAL WRITING (3 parallel groups)	
60 min	9.00-10.00	Data requirements	Marloes, Caroline, Peter, Paulien, Alemayehu + other APHRD
	9.00-10.00	Discussion SAICM	Paul de Boer and Dr Haimanot
30 min	10.00-10.30	Manual writing Human Health (MRL+consumer)	Caroline + ?
		Manual writing Human Health (Tox+occupational)	Marloes + ?
		Manual writing Environment	Peter + ?

30 min	10.30-11.00	COFFEE	
90 min	11.00-12.30	Continuation manual writing	See above
	11.00-12.00	Discussion Joost-Alemayehu	Joost Lahr and Alemayehu
60 min	12.30-13.30	LUNCH	
	12.30-afternoon	Discussions Floor-Alemayehu	Floor and Alemayehu
90 min		Continuation manual writing	See above
30 min	15.00-15.30	TEA BREAK	
60 min	15.30-16.30	Wrap up, appointments for follow-up	All
	16.30	Closure	

Annex 2. GAP table of 6 pilot compounds used in the workshop exercises

Application Patterns

of dimethoate,

endosulfan and

deltamethrin

Crop &/or	Product name	F, G	Pests or Group of pests	Form	nulation		Арр	olication		Applicat per tre		PHI (days) (l)	Remarks (m)
Situation (a)		or l (b)	controlled ©	Type (d-f)	Conc. Of as (i)	Method kind (f-h)	Growth stage & season (I)	Number min max (k)	Interval b/n applications (min)	Water I/ha min max	Kg as/ha min max		
Barley	Danadim	F	Russian Wheat Aphid	EC	40%	Ground & Aerial	Nymphs & adults	1 to 2	1 week	200	0.4 -0.6	14 - 20 days	
Cabbage	Agro-thoate	F	Cabbage Aphid	EC	40%	Ground	Nymphs & adults	1	-	200	0.6	14 - 20 days	
Cotton	Ethiosulfan	F	ABW,Aphids, thrips, bugs, caterpillars	ULV	25%	Ground & Aerial	Larvae (ABW), Nymphs & adults	1 to 3	> 1 month	-	0.75	35 days	
Cotton	Thiodan	F	ABW	EC	35%	Ground	Larvae	1 to 3	> 1 month	20-30	0.7	20 days	
Maize	Thionex	F	ABW	ULV	25%	Ground & Aerial	Larvae	1	-	-	0.75	3 weeks	
Maize	Thiodan	F	ABW	EC	35%	Ground	Larvae	1	-	200-300	0.7-1.05	14 - 20 days	

Cotton	Decis	F	ABW & leafhoppers	EC/ULV	0.5	Ground & Aerial	Larvae (ABW), Nymphs & adults	1 to 3	> 1 month	20-30 (for EC)	0.25- 0.37	10 days	
Cotton	Decis	F	ABW & leafhoppers	ULV	0.6	Ground & Aerial	Larvae (ABW), Nymphs & adults	1 to 3	> 1 month	-	0.18	10 days	
Cotton	Decis	F	ABW & leafhoppers	EC	2.5	Ground	Larvae (ABW), Nymphs & adults	1 to 3	> 1 month	20-30	0.0075- 0.015	15 days	
Flowers	Decis	G	Aphids, thrips, caterpillars	EC	2.5	Ground & Aerial	Nymphs, adults & larvae	1	-	30 - 1000	0.0125- 0.0165	15 days	
Maize	Deltacol	I	Maize weevil	DP	0.2	Mix with cobs or grain	Adfults & larvae	1	-	-	0.1	1 month	
Maize	Ethiodemethrin	F	MSB	WDP	2.5	Ground	Larvae	1	-	200	21	5-10 days after treatment	Product of China
Cabbege	Ethiodemethrin	F	Mealy cabbage aphid	EC	2.5	Ground	Nymphs & adults	1	-	200	0.025	20 days	

					For	mulation		Appli	cation		Application	rate per treatment		
Crop and/or situation (a)	Member state or Country	Product name	F,GorI (b)	Pest or Group of Pests controlled (c)	Type (d-f)	Conc. of ai (i)	Method kind (f-h)	Growth stage and season (j)	Numb er min max (k)	Interval b/n applications (min)	Water l/ha min max	Kg as/ha min max	PHI (days) (l)	Remarks (m)
	2,4-D													
118 Teff	Ethiopia	Agro 2,4D Amine 720	F	Broad leafed weeds	SL	720g/l	Spray	Post emergence to young vigorously growing weeds	1	-		0.72	-	
129 Teff	>>	Desorme Liquid	F	Broad leafed weeds	EC	720g/l	Spray	>>	1	-	150-400	0.72-1.26	-	
134 Teff	>>	Ethio 2,4D 720 SL	F	Broad leafed weeds	SL	720g/l	Spray	>>	1	-	120-220	0.72	-	
170 Teff	>>	U-46 KV Fluid	F	Broad leafed weeds	EC	720g/l	Spray	>>	1	-	Information not found	0.72	-	
172 Teff	>>	2,4D PA	F	Broad leafed weeds	SL	720g/l	Spray	>>	1	-	Information not found	0.72	-	
173 Teff	>>	Weed Killer	F	Broad leafed weeds	SL	720g/l	Spray	>>	1	-	200	0.72	-	
118 Maize	>>	Agro 2,4D Amine 720	F	Broad leafed weeds	SL	720g/l	Spray	>>	1	-	150-400	0.54-1.08	-	
129 Maize	>>	Desorme Liquid	F	Broad leafed weeds	EC	720g/l	Spray	>>	1	-	Information not found	0.72	60-70	
170 Maize	>>	U-46 KV Fluid	F	Broad leafed weeds	EC	720g/l	Spray	>>	1	-	Not found	0.72	-	
174 Maize	>>	Zura Herbicide	F	Broad leafed weeds	EC	720g/l	Spray	>>	1	-	200-300	0.72		
Cereals	>>	Dicopur	F	Broadleaf weeds	SL	720g/l	Spray	>>	1		Information not found	0.78-2.4		

Good Agricultural Practice (GAP) Table / Form

Lam	nbdacyh	alothrin								-				
65 Cotton	>>	Karate 0.8 ULV	F	Cotton pests	UL	8g/l	Spray	When pest appears(1-3 enstar) during square stage of cotton (ABW)		-	-	0.02-0.024	-	
66 Cotton		Karate 5%EC		Cotton pests	EC	50g/l	Spray	>>	1	-	250	0.01-0.025	-	
114 Cotton		Winner 0.8 ULV	F	African BW	UL	80g/1	Spray	>>			-	0.02	-	
67 Maize		Lambdacyhalothrin 5%EC	F	Maize stalk borer	EC	50g/1	Spray	At knee height of the crop When pest appears		-	Information not found	0.02	-	
68 Maize		Lamdex 5%EC	F	Maize stalk borer	EC	50g/l	Spray	>>		-	Information not found	0.01	14	

Metalaxy	l + Mancozeb												
177 Potato	Agro-Laxyl	F	Late blight, Downy mildew, Pythium, Phytophthora,	WP	Metalaxyl 75g/kg Mancozeb 560		Spray before outbreak with two weeks interval	more	14 days	500-1000	1.905-2.54	8-14	
Tomato	Agro-Laxyl	F	Late blight, Downy mildew, Pythium, Phytophthora,	WP	>>	Spray	Start spraying 3-5 days after transplanting and repeat every week thereafter	>>	7 days	500-1000	1.905-2.54	8-14	
204 Potato	Manoxyl 72%WP	F	Late blight,	EC	Metalaxyl 80g/kg Mancozeb 640g/kg		Spray when disease appears	Not given	Not given	750	0.36-0.72	14	
205 Potato	Matco	F	Late blight,	WP	Metalaxyl 80g/kg Mancozeb 640g/kg		During outbreak	Not given	Not given	1000	1.8	-	
Tomato	Matco	F	Late blight	WP	Metalaxyl 80g/kg Mancozeb 640g/kg		>>	Not given		1000	1.8		
Onion	Matco	F	Late blight	WP	Metalaxyl 80g/kg Mancozeb 640g/kg		>>	Not given		500	1.8		
221 Potato Tomato	Ridomil MZ 63.5	F	Fungus spp.	WP	Metalaxyl 75g/kg Mancozeb 560g/kg				Not found	Not found	1.5875	-	
201 Tomato	Mancolaxyl72%WP	F	Late blight,	WP	80g/kg	Spray					2	-	
220 Tomato	Ridomil 5 G	F	Fungus spp.	GR	50g/kg	Spray			Informationn not found			-	

221 Onion	Ridomil MZ 63.5	F	Fungus spp.	WP	Metalaxyl 75g/kg Mancozeb 560g/kg				14 days	400-500 ??	1.5875	-	
221 Potato	Ridomil MZ 63.5	F	Fungus spp	WP	Metalaxyl 75g/kg Mancozeb 560g/kg				Information not found	400-500??	1.5875		
Potato	Ridomil MZ 68	F	Downy mildew,late blight,early blight	WG	Mtalaxyl – M 40g/kg Mancozb 640g/Kg	Spray	Before out break of disease is anticipated followed by further application at 14 days interval during dry conditions Season= during long rainy season and using irrigation	more	14 days	400-500	1.7-2.04	14	
Tomato	Ridomil MZ 68	F	Downy mildew,late blight,early blight		Mtalaxyl – M 40g/kg Mancozb 640g/Kg		3-5 days after transplanting followed by further application at 7-10 days interval during dry weather conditions. Rpeat application after each heavy rain	more	7-10 days	500-1000	1.7-2.72	3	
Onion	Ridomil MZ68	F	Downy mildew,late	WG	Mtalaxyl –		First	2 or		500-1000	1.7-2.38	7	

	blight,early blight	M 40g/kg Mancozb 640g/Kg	application 5- 7days after transplanting or when diseases are anticipated followed by further applications at 10-14	re 10-14 days		
			applications at 10-14 days. Repeat application after each heavy rain			

Annex 3. Presentations concerning pesticide residues and dietary risk assessment, as given in the 10-14 December 2012 workshops in Wageningen.

X

X

X

Residue definition - why?

Definition: Remaining parts of a PPP after application on crops according to a certain use:

- · Parent and/or one of more metabolites
- · All metabolites which are toxicologically relevant')
- · For approval: risk assessment for authorisation After approval: for enforcement/monitoring by food safety authority

ctgb

- Metabolism studies with ¹⁴C-labelled active substance in:
- Leafy crop Root/tuber crop
- Fruit .

X

- Cereal Pulses/oilseeds
- Way of application (foliar spray, soil or seed treatment)
- If metabolism is similar in 3 different plant groups investigated, metabolism is assumed similar in all plants

ctgb

ctgb

X

X

X

Input

Calculation:

Consumer risk assessment chronic, tiered approach

- Chronic intake (TMDI) ≤ ADI
- Chronic intake (TMDI) > ADI *Refinement* of calculation using processing data and median residue values
- Refined chronic intake > ADI No safe use, restriction of application needed / authorisation cannot be granted.

acute exposure

Large Portion Dietary Intake data (LP, children, adults,

Residue data (MRL/HR)

Unit weight of the particular crop Standard variability factor for particular crop (v)

bw ESTI = Estimate of Short-Term Intake

one time/occasional intake

IESTI = LP × (HR or HR-P) × v

ctgb

- Large portion instead of mean portion
- Variation in residue levels between different units
- while MRL has been based on composite
- sample
- To decide whether a risk can be expected when consuming a large portion with a unit with a high residues level (eg one whole melon)

Consumer risk assessment acute exposure

Why is an acute consumer exposure calculation necessary

- · Large portion instead of mean portion
- Variation in residue levels between different units while MRL has been based on composite sample
- To decide whether a risk can be expected when consuming a large portion with a unit with a high residues level (eg one whole melon)

ctgb

WHO-GEMS diets

WHO = World Health Organisation GEMS = Global Environment Monitoring System

In different parts of the world people consume different food items, dependent on habits, agricultural circumstances, availability of sea/lakes, etc.

WHO composed 13 diets for different regions in the world: 'WHO-GEMS cluster diets'.

Food basket or diet: definition and

Definition

'Combination of food items consumed by someone in a certain time period'

context

Why do we need the food basket With the food basket, residue level and reference values we can perform risk assessments

ctgb

Characteristics WHO GEMS

- Based on agricultural and trade data
- . Minor uses might not be taken into account

Disadvantage:

- In general data overestimated since it is a compilation of data which also contain other factors like animal feed consumption
- No statistical information or distribution so all individuals are the same (no distinguishing between different consumer groups)

X

Input:

necessary

X

Deltamethrin ADI and ARfD

• ADI: 0.01 mg/kg bw/d

• ARfD: 0.01 mg/kg bw

Annex 4. Presentations concerning occupational health risk assessment, as given in the 10-14 December 2012 workshops in Wageningen

Proposal for Practical

HAZARD ASSESSMENT

Ж

T

X

T

- 1. Quality check of submitted application forms
 all data requirements fulfilled?
 standard test protocol used?
- GLP?
- Proposal for reference values?
- 2. Check international AOEL, ADI, ARfD see internet links
- 3. Compare dossier with international values - Is submitted dossier in line with international reference values?

ssier in line with international reference

Sources for AOELs/ADI/ARfD

- Pesticide Properties DataBase
- EU Review reports

Ж

T

- nce.selection&a=1
- EFSA conclusions http://www.efsa.europa.eu/en/pesticides/pesticidesscdocs.htm
- JMPRs http://www.inchem.org/pages/jmpr.html
- US EPA

References

 EU Regulation (EC):1107/2009 http://eur. bs.europe.eu/l.ex/inServit.ex/inServ.do?uire.0.j.t.2009.309:0001.0050.E NEDE
 EU Commission Regulation (EU) 64/2011 http://eur. bs.europe.eu/l.ex/inServit.ex/inServ.do?uire.0.j.t.2001.155:0001:0066.E NEDE
 EU Commission Regulation (EU) No 54/2011 http://eur. bs.europe.eu/l.ex/inServit.ex/inServ.do?uire.0.j.t.2008.142:0001:0739.E NEDE
 Regulation (EC) No 440/2008 http://eur. bs.europe.eu/l.ex/inServit.ex.uh/Serv.do?uire.0.j.t.2008.142:0001:0739.E NEDE
 Regulation (EC) No 440/2008 http://eur. bs.europe.eu/l.ex/inServit.ex.uh/Serv.do?uire.0.j.t.2008.142:0001:0739.E NEDE
 US data requirements: http://www.goo.gov/itdsvit/skgER.2007-10.26bdfE7: 2056.pdf
 EPA test guidelines: http://www.eps.gov/occop/publications/Test_Guidelines/series870 http://www.eps.gov/occop/publications/Test_Guidelines/series870 http://www.eps.gov/occop/publications/Test_Guidelines/series870 http://www.eps.gov/occop/publications/Test_Guidelines/series870

Introduction

· Exposure scenarios:

- Operators: persons involved in the mixing/loading and application of a pesticide
- Workers: persons who enter an area or handle crop previously treated with a pesticide
- Bystanders: persons who are located within or directly adjacent to the area where PPP application is taking place or has recently been completed.

ctgb

ctgb

Exposure models: operator

Evaluation of available exposure models:

EFSA Project to assess current approaches and knowledge with a view to develop a Guidance Document for pesticide exposure assessment for workers, operators, bystanders and residents. http://www.efsa.europa.eu/en/scdocs/doc/25s.pdf

- Upwards vs downwards
- · No consensus on which model to use for which situation.

ctgb

ctgb

ctgb

ctgb

ctgb

Annex 5. Presentations concerning environmental risk assessment, as given in the 10-14 December 2012 workshops in Wageningen

Proposal for Ethiopia

- Determination of risk classification criteria low risk
 possible risk
 high risk
- Low risk: if ETR < 1/safety factor of the EU → risk acceptable
- acceptable
 Possible risk: if ETR ≥ L/safety factor of the EU but ≤ a certain exceedance factor (different for different protection goals) → risk acceptable for the time being, but if risk reduction measures are possible they should be applied
 High risk: if ETR > certain exceedance factor → risk unacceptable; authorisation not possible, unless sufficient risk reduction measures can be applied to reduce the risk to an acceptable level

ALTERRA

Thank you for your attention!!

Questions?????	
	?
	T
L ALTERRA	ctgb

Proposal for Ethiopia

- Advantages of this approach:
- the focus can be directed on the real high risk pesticides
- No high economic consequences due to loss of too many pesticides
- In future refinement steps can be introduced → the risk of pesticides with a possible risk can be estimated in a better way

ALTERRA

Annex 6. Summary of exposure scenario development for surface water and groundwater protection goals, as developed in the 5-9 November 2012 workshop in Wageningen.

So:

Definition of protection goals: results

- First priority to protect is surface water, used for drinking water (Nov '11 workshop, important rural areas + main source for drinking water in Rift Valley)
- Second priority is groundwater: 90% rural areas and 40% major towns get drinking water from gw source (Nov'12 workshop, Water Works Design and Supervision Ethiopia)

÷.

MODEL->exposure conc.

select crop & location

Summary sw and gw scenario development

 B2.1: Development of a scientific evaluation system for the registration of pesticides – Evaluation of dossiers of chemical pesticides

Registration procedure:

- Developing scientific methods to assess risks in Ethiopian context and for use pattern requested by registrant
- Nov '11 workshop: Environment drinking water high priority
- Nov '12 workshop: Focus on risks for drinking water production from surface water and groundwater

Summary sw and gw scenario development

- Workshop 5-9 November 2012 development of scenarios to estimate concentrations in surface water and groundwater used for drinking water production.
 - Present were: # Alemayehu Woldeamanual- APHRD- PRRP coordinator # Dr Dereje Gorfu –EIAR- crop characteristics # Mr Engida Zemedagegenhu- Water Works Design and
- Supervision Ethiopia- groundwater knowledge

 From Alterra: several gw and sw scenario development
- and model experts: Mechteld ter Horst, John Deneer, Jos Boesten and Paulien Adriaanse

Summary sw and gw scenario development

- PEC: <u>local relevant concentrations</u>, so specific for Ethiopian conditions
- Concentrations according to GAP use (not point sources, industry)
- Concentration depends on
 # protection goal (what, where, how strict)
 # agro-environmental conditions, compound properties
- Fixed set of agro-environmental conditions is called scenario

Summary sw and gw scenario development

- Scenario should be based upon EU: 'realistic worst case approach' (Directive 91/414/EC of EU) Ethiopia: phrase in Proclamation ??
- Realistic worst-casedness or the vulnerability of the scenario is often translated as '90th-percentile occurrence in time and space'

Interludum: Vulnerability

Scenarios should be protective

- x % of in reality existing situations (in time and space) in Ethiopia are protected
- 50% means half of all situations in Ethiopia are protected = average situation

90% means that 90% all situations in Ethiopia are protected = EU translation of "realistic worst case situation"

Situations in Ethiopia

not protected

protected

Interludum: Vulnerability

Scenarios should be protective, "realistic worst case"

Proposal: 99th%-ile occurrence in time and space is protected, so 1% is not protected

More strict than in EU because humantoxicological standard is used in Ethiopia (exceedance means casualties)

Definition of protection goals

Definition of protection goals

How to define protection goals into detail ?

- Answer questions: • What do you want to protect?
- Where ?
- When and how strict ?

Why is definition of protection goals important?

- If protection goals have been defined into detail
 we know which exposure concentrations we need to assess, so
- we can design scenarios, so
- we can perform standardized, cheap, reproducible risk assessments for registration

Summary sw and gw scenario development

1. Data gathering

- Inventory of agro-environmental characteristics and existing environmental standards in Ethiopia (CR1, Nov '11) + workshop Nov '11
- More details on meteorology (precipitation, yearly totals, daily totals, evaporation, 30 years, model-based, so no data gaps, 80*80 km²), soils (oc, 5*5 km², ISRIC, HWSD)
- More details on groundwater (Mr Engida)
- More details on crops and pesticide use (Dr Dereje)
- More details on pesticide use, registration (Alemayehu)

- Summary sw and gw scenario development
- Scenario development according to scheme developed by Alterra, based on experience in scenario development in EU since early '90 (soil, groundwater, surface water, greenhouses in NL and EU, groundwater and surface water in China)
- See next slides: in Nov '12, we walked through procedure for surface water and groundwater, separately
- First define protection goals into detail, next develop scenarios, parameterise these and develop software

Scenario selection and parameterization

Definition of protection goals

Protection goals #2: surface water orary lakes/ponds/swa ick and aircraft (

Summary sw and gw scenario development

- Two zones identified: 2. Identification of scenario zones < 1500 m and > 1500 m, same for sw and gw scenarios,
- similar to zones used for Efficacy assessments in Ethiopia
- Correspond to distinction between Kolla and Woina Dega traditional agro-ecological zones
- Use of more than 1 zone gives flexibility in registration procedure, but may be difficult to uphold
- Important for scenario selection procedure (%-ile selection)
- To be approved by political level, i.e. Pesticide Advisory Board ?

Protection goals: surface water

- We need set priorities, so limit number of protection goals for which we can work out the scenarios
- Proposal: take 2 most vulnerable goals, i.e. where we expect the highest concentrations

Proposal

- River type: stream/small river near villages, entire Ethiopia (most vulnerable + widespread) 1.
- 2.
- Pond/lake type: temporary pond, (cattle drinking) Rift Valley, east Ethiopia (also vulnerable)
- 3. (Rift Valley lakes: used when groundwater unsuitable for drinking water, less vulnerable because of size)

Protection goals #1: surface water

Protection goals #3: surface water

- **Rift Valley lakes**
- Drinking water for man and cattle

- E.g. lake Ziway, lake Nagano, select smallest lake

Protection goals sw in scenario zones

Definition of protection goals

most vulnerable #1 Small river: occurs only in scen zone >1500 m

#2 Temporary pond occurs both in scen zone > 1500 m (but <2000 m) and scen zone < 1500 m (but >500 mm rain)

Protection goals gw in scenario zones

#1 Alluvial aquifers along small rivers #2 Volcanic aquifers of shallow wells

#1 and #2 may be close to each other

#3 Alluvial aquifers at RV margins and lowlands (map circles around yellow locations, overlain with scenario zones)

#4 Fractured basement rocks of shallow wells

Protection goals#1: groundwater

Alluvial aquifers along small rivers (diverging rivers, highlands)

Hand dug wells, min 3 m deep, average 15 m deep Top layer is clay, thickness varies Water infiltrates from soils above with mainly cereal production Gentle slopes General there is water in well, esp. if rain is high and geological formation favourable Close to gw #2 (some km)

Protection goals#2: groundwater

Volcanic aquifers of shallow wells

Drilled wells, min depth 50 m, up to 100 m deep Clay layer on top Water from above fractured volcanic rocks, either barren (bushes), or cultivated: then often terraced (otherwise erosion) with pesticide use. Cereals dominate, some pulses (faba bean)

(faba bean) Can be flat land, steep slopes, but gw is deep or population is high (therefore deeper) Close to gw#1 (some km) Definition of protection goals

Protection goals#1: groundwater

Alluvial aquifers along small rivers (diverging rivers, highlands)

Protection goals#2: groundwater

Volcanic aquifers of shallow wells

Protection goals#3: groundwater

Alluvial aquifers at the Rift Valley margins or lowlands

Most vulnerable are shallow wells (3 m, hand drilled), then near surface water. (Otherwise depth from artesian to 230 m) Top layer of clay. Water comes from runoff/percolation from hills/mountains, runoff from volcanic rocks, irrigation return water (spate irrigation)

Protection goals#4: groundwater

Fractured basement rocks of shallow wells

Drilled wells, min 10-12 m deep, max 50 m deep, Fed by runoff from massive basement rocks If fractured zone thick: water all year round, if thin, dry from Dec to June. Fractured zone often near small rivers More arid zones, sorghum, limited teff, so limited pesticide use, so not so vulnerable

Definition of protection goals

Crops in types of farming and scenario zones

Large Scale Farms, LSFs:

zone > 1500 m; wheat, barley, maize Also pulses (faba bean, field pea, French bean, chickpea), coffee, citrus, vegetables (on, tom, pepp, cabb)

zone < 1500 m: sorghum, sesame, French bean (Faseolis vulgaris) sugarcane, cotton, maize Also citrus, sweet potato (for planting mat.), vegetables (tom, on, pepp, cabb)

Vegetables are: onions, tomato, pepper, cabbage, French beans

Protection goals#3: groundwater

Alluvial aquifers at the Rift Valley margins or lowlands

Protection goals gw in scenario zones

#1 Alluvial aquifers along small rivers: occurs only in scen zone >1500 m

most vulnerable

- #2 Volcanic aquifers of shallow wells: occurs only in scen zone >1500 m #1 and #2 may be close to each other

#3 Alluvial aquifers at RV margins and lowlands (map circles around yellow locations, overlain with scenario zones): occurs mostly in scenario zone <1500 m, may be in scenario zone >1500 m (but then < 2000 m),

#4 Fractured basement rocks of shallow wells

not considered, less vulnerable

Types of farming in scenario zones

Smallholders

- these are evenly distributed across scenario zone >1500 m, - these are evenly distributed in zone 1000-1500 m in scenario zone < 1500 m

Large Scale Farms (LSFs)

- these occur in both scenario zones, irrigated, along major (dominant < 1500 m because big rivers, flat, fertile alluvial, less >1500 m, may be irrigated, mostly rain fed, mostly cereals)

Crops in types of farming and scenario zones Smallholders:

Zone > 1500 m: Teff, maize, wheat, barley, vegetables (all), Also potato, pulse (faba bean, field pea, French bean, chickpea, lentils), pome/stone fruit,

Zone < 1500 m (1000-1500 m): Teff, maize, wheat, barley, vegetables (all), Also potato, sweet potato, banana (few pesticides), mango

Coffee (no pesticides, so not needed)

Vegetables are: onions, tomato, pepper, cabbage, French beans

Scenario selection and parameterization

Selected models for surface water: Drift

Selected models for surface water: Runoff

Proposal for Ethiopia

```
9. Parameterization of scenarios in the models
```

- Take the R4 (worst case EU) standard PRZM input - Parameterising soil for PRZM is too ambitious in PRRP
- Use Ethiopian weather (daily rainfall and evapotranspiration)
- Use Ethiopian crops

Selected models for surface water: Fate in SW

Selected models for surface water

Entry routes

Most important entry routes of pesticides in to the surface water

Selected models for surface water: Runoff

6. Choice of models

- PRZM (Pesticide Root Zone Model) model (Carsel et al., 1998)
 Simulates pesticide runoff from agricultural fields
 Used in USA and EU

N.B. PRZM calculates sheet runoff flow, not via gullies !

Selected models for surface water: Fate in SW

· Selected model: TOXSWA

- Developed by ERA team of Alterra
 TOXSWA
- Used in NL and EU pesticide registration
- Ditch, stream and pond scenarios parameterised for TOXSWA in EU

Selected models for surface water: Fate in SW 9. Parameterization of scenarios in the models

Proposal for Ethiopia

- Temporary lakes
 - EU FOCUS pond properties (sediment, sus.sol, macrophytes)
 Ethiopian lake dimensions
 - E.g. minimal dimension of lake were people and/or cattle still drink water
 - EU FOCUS pond properties (sediment, sus.sol, macrophytes)
 - Ethiopian contributing area and crops

Scenario selection and parameterization

Groundwater protection goal 6. Choice of models

Parameters α_0 , α_1 , α_2 determined by regression of output of EuroPEARL (spatially distributed model, used in NL and EU) and the metamodel output:

• α_0 , α_1 , α_2 taken for climate zone warm, wet (up to >800 mm rain, >12.5 C)-> most representative for Ethiopia

Consequences of extrapolating the EuroPEARL metamodel to Ethiopia \rightarrow more wet and higher temperature

• Meta model \rightarrow increasing q results in increasing concentration

Defensible because conservative

Summary sw and gw scenario development

 Definition of vulnerability drivers and development of scenario selection procedure

- Simple back-of-envelope calculations demonstrated that runoff is main driver for concentration in surface water (dimensions water body and spray drift are less important)
- Main vulnerability driver is runoff, translated as number of days with daily rainfall above 20 mm
- + Determine probability of $\mathrm{P}_{\mathrm{day}} {>} 20~\mathrm{mm}$ in time and space
- Repeat procedure for selected protection goals, i.e. # small streams >1500 m
 # temporary pond 1500-2000 m
 # temporary pond < 1500 m but > 500 mm

Summary sw and gw scenario development

Three candidate locations for surface water protection goal #1: small streams in areas > 1500 m

Groundwater protection goal

The EuroPEARL meta-model

 $Ln(C_{1}) = \alpha_{0} + \alpha_{1} * X_{1} + \alpha_{2} * X_{2}$

 $C_L: \qquad the \ concentration \ (\mu g/L) \ in \ leaching \ water \ at \ 1 \ m \ depth, \\ given \ a \ net \ soil \ deposition \ of \ 1 \ kg/ha$

6. Choice of models

- α₀, α₁, α₂ : regression parameters that depend on
 temperature and annual rainfall
 not compound specific, but specific to a region
- $\begin{array}{l} X_{1}, X_{2} \mbox{ depend on} \\ & \mbox{ soil properties (organic matter and water content)} \\ & \mbox{ compound properties } (K_{om}, DT_{5o} \mbox{ degradation}) \end{array}$

TIKTAK ET AL: MAPPING GROUND WATER VULNERABILITY TO PESTICIDES J. ENVIRON, QUAL., VOL. 35, JULY–AUGUST 2006

Scenario selection and parameterization

Summary sw and gw scenario development

Definition of vulnerability drivers and development of scenario selection procedu

Procedure (small streams): # use grids (80*80 km²) and select grids > 1500 m # each grid, each year: Number of d with P_{day} >20 mm -> 33 values (33 yrs)-> rank per grid and select 99th%ile = nr 33 for each grid (now *temporal* %-ile)

plot this single value per grid on the map # rank all grids (>1500 m) and select 3 grids with highest %-ile (96.5, 98.2 and 100%) (now *spatial* %-ile) # next, select most suitable grid for protection goal:

here: small streams in agricultural areas

Summary sw and gw scenario development

Temporary ponds:

Criteria: # streams >10 km apart # flat area # cultivated area

Top eleven candidate locations for surface water protection goal #2a: temporary ponds in areas < 1500 m and with more than 500 mm rain

Summary sw and gw scenario development

Temporary ponds:

Criteria: # streams >10 km apart # flat area # cultivated area

Top twelve candidate locations for surface water protection goal #2b: temporary ponds in areas between 1500-2000 m

Summary sw and gw scenario development 7. Definition of vulnerability drivers and development of scenario selection procedure

- Scenario selection procedure possible with aid of simple analytical model (metaPEARL) run for spatial distributed data (percolation, oc- 5*5 km)
- Thus leaching calculated for selected grids (e.g. 1500 m)
- Done for 49 compounds (leaching is f(properties), $K_{om} = 10, 20, 30, 60, 120, 240, 480 L/kg and DT_{50} = 10, 20, 30, 60, 120, 240, 480 d)$
- 98-100% le selected for each compound, -> 49 compounds overlain-> common grids qualify as candidate locations

Summary sw and gw scenario development

Six candidate locations for groundwater protection goal #3a: alluvial aquifers in the Rift Valley margins and lowlands < 1500 m

Summary sw and gw scenario development

 Next steps:
 8. Application of scenario selection procedure

 • First select scenario locations

9. Parameterization of scenarios in the models

Next, start parameterisation:
 # crop development data
 # confirm layout small streams and temporary ponds
 # obtain horticultural irrigation data

10. Design and construction of software tool

Adapt PRIMET tool for sw and gw concentrations

Scenario selection and parameterization

Summary sw and gw scenario development

Six candidate locations for groundwater protection goals #1 and 2: alluvial aquifers along small rivers and volcanic aquifers on shallow wells > 1500 m

Summary sw and gw scenario development

Three candidate locations for groundwater protection goal #3b: alluvial aquifers in the Rift Valley margins between 1500-2000 m

Summary sw and gw scenario development

Annex 7. Risk assessment for the Ethiopian protection goals for the environment, using the PRIMET tool (to be adapted)

Groundwater as source of drinking water	Practicum today
 Step 4: Evaluation of the procedure 5 minutes time to write down any difficulties experienced during the risk assessment and ideas for improvements 	 Protection goals Ethiopia Surface water as source of drinking water Groundwater as source of drinking water Aquatic ecosystem Bees Non-target arthropods Earthworms Birds Non-target terrestrial plants
What? Populations of aquatic species Where? (temporary) lakes, streams, rivers, storage reservoirs • No scenarios selection procedure defined yet. Probably conservative approach chosen.	Steps Exposure → calculate PECsw using PRIMET Toxicity → from dossier + safety factors fish (acute, chronic) algae (acute) invertebrates (acute, chronic) macrophytes (acute)
How strict? Sustainability of aquatic ecosystems should be ensured. Therefore, survival and reproduction of the most sensitive aquatic species should not, or only briefly, be affected	 - macrophyses (acute) 3. Risk assessment → Calculate ETRs by hand (not PRIMET) Fill in the relevant sections of the data requirement form after each step 4. Evaluate procedure Any difficulties?
чаденінден шиічелвітет сtgb	
Aquatic ecosystem • Step 1: Exposure: Needed → PECsw - PECmax for acute risk assessment - PECmax or PECtwa for chronic risk assessment - No scenarios selected or developed for Ethiopia yet. - Therefore: practice with demo scenario in present PRIMET version	 Aquatic ecosystem Step 1: Exposure – PRIMET Goal: Fill in fate properties and application scheme in PRIMET for assessment 'Aquatic' Extract PECsw (in µg/L) from PRIMET (Mechteld will show how to do so)
La wadeningen Universiteit wegeningen	Filling in fate properties and application scheme: already done for protection goal surface water for drinking water
	Aquatic ecosystem
Step 2: Toxicity: Take the following values from the dossier: • acute LC50 (fish) • EC50 (algae, invertebrates, macrophytes) • chronic NOEC (fish and invertebrates) Safety factors used in the EU: • acute LC50 fish: 100 • acute C50 invertebrates: 100 • acute C50 invertebrates: 100 • acute LC50 invertebrates: 10 • acute LC50 invertebrates: 10 • acute C50 invertebrates: 10 • chronic NOEC fish: 10 • chronic NOEC invertebrates: 10	Step 3: Risk assessment 1. Fish (vertebrates) - Acute - Chronic 2. Invertebrates - Acute - Chronic 3. Alg - no distinction between acute and chronic; use of PECmax 4. Macrophytes - no distinction between acute and chronic; use of PECmax

