

Development of scenarios for leaching of pesticides to groundwater in China

Alterra Wageningen University and Research Centre The Netherlands

Jos Boesten & Mechteld ter Horst (presented by Paulien Adriaanse)

WAGENINGENUR

- To support ICAMA to include environmental risk assessment methodologies and criteria in the pesticide registration procedures
- To form a Chinese-EU science platform that is able to support the regulators with scientific advice in the future

Dutch partners

Chinese partners

Set-up of the PERAP project

WP1: Project Inception, management, and follow-up

Principles of Environmental Risk Assessment

Protection goals

Aquatic organisms

- Birds (including rodenticides)
- Bees

Silkworms

Models and scenarios to estimate:

Focus of this presentation

Leaching to groundwater

Exposure in surface water

as a result of normal use of pesticides

normal use

point source pollution

Process: workshops in China

- June 2007:
 - Introduce ICAMA and CAAS to EU methods for assessment of environmental risks of pesticide use.
- October 2007:
 - discuss what and where to protect in China
 - data inventory
 - development of method for China

Solid financial basis from EVD

- February 2008:
 - make work plan for coming 1.5 years,
 - explain method for groundwater in detail
- June 2008:
 - discuss the work done so far on groundwater scenarios
 - field trip
 - rediscuss where to protect aquatic organisms

Groundwater scenarios: where is protection needed and what are consequences ?

- groundwater at 2 m depth in southern China:
 - drinking water for small communities
 - estimates on scale of ha are end result
- groundwater at 20 m depth in drinking water wells in northern China:
 - larger scale
 - dilution based on crop area treated can be included
 - later perhaps also degradation in subsoil

Groundwater scenarios

- first: what would be needed for sophisticated approach (GeoPEARL) ?
- then: pragmatic approach

Groundwater scenarios: what needed for GeoPEARL ?

- 250 meteorological stations: OK
- GIS information on land use: available
- a few hundred soil profiles linked to soil map units – is this available ? \rightarrow NO

- GeoPEARL China not possible, so pragmatic approach
- Oktober 2007: Chinese Academy of Agricultural Sciences (CAAS) produced nine major climate zones

pesticide registration considerations for combining climatic zones or splitting up ?

agricultural considerations for ignoring climatic zones ?

40

February 2008 \rightarrow workshop discussions

Result:

- scenario zones were defined and accepted by policy makers and scientists
- developed method was applied in spring 2008

Scenario zones: defined by CAAS, spring 2008

Groundwater scenarios: general strategy:

(1) split forest and agricultural land

- area of forest may be very large
 - 90th percentile would often be a forest scenario for a normal agricultural pesticide application
- suggestion: split in all zones forest and agricultural land
- develop scenario for each (ICAMA is not interested in forest)

Groundwater scenarios: general strategy:

(2) split agricultural land into paddy rice and dry land agriculture

- Paddy rice is important economically
 - large fraction of pesticide use in rice
- leaching scenario for paddy rice completely different from normal agriculture
- different scenarios for paddy rice

Groundwater scenarios: general strategy: (2) split agricultural land into paddy rice and dry land agriculture

ALTERRA no scenarios for Qinghai-Tibet \rightarrow hardly any agriculture

Groundwater scenarios: general strategy:

(2) split agricultural land into paddy rice and dry land agriculture

Northern scenario zones (1 crop cycle a year)

- divide each climatic zone into:
 - dry land agriculture area (priority for Northern scenario zones)
 - paddy rice area
- develop within each climatic zone one scenario for:
 - dry land agriculture
 - paddy rice

but only in case of a significant surface area in zone (no scenarios for Qinghai-Tibet → hardly any agriculture)

Groundwater scenarios: general strategy:

(2) split agricultural land into paddy rice and dry land agriculture

Yangtze River basin and South China (multi crops)

- Dry land agriculture and paddy rice grow alternately in the same fields → splitting not a good idea!
- develop within the 2 climatic zones multi crop scenarios
 - leaching of pesticide happens on a time scale of years, not days

Groundwater scenarios: realistic worst case in each climatic zone

- EU risk management: use 90th percentile in each zone
 in combination with 0.1 μg/L groundwater criterion
- China: groundwater criterion based on human toxicology
 acceptable levels in order of 10-100 μg/L
- China: 99th percentile in each zone

Groundwater scenarios: vulnerability concept: dry land agriculture

Northern scenario zones: dry land agriculture

- main vulnerability drivers for >70% of pesticides:
 - organic matter
 - rainfall + irrigation
- FOCUS concept: 80%+80%=90%
 - 80th percentile soil
 - 80th percentile weather
- in analogy for China: 90%+90%=99%
 - 90th percentile soil
 - 90th percentile weather

Groundwater scenarios: vulnerability concept: multi crop, paddy rice

Northern scenario zones: paddy rice Yangtze river and South China: multi crop

- main vulnerability drivers for >70% of pesticides:
 - organic matter
 - total annual percolation
- FOCUS concept: 80%+80%=90%
 - 80th percentile soil
 - 80th percentile weather
- in analogy for China: 90%+90%=99%
 - 90th percentile soil
 - 90th percentile annual percolation

Groundwater scenarios: 90th percentile soil in each climatic zone

- Consider each scenario zone separately
- target: average organic matter content of top meter of soil
 - if not available, use organic matter content for top layer
- consider organic matter maps
 - for each: pre-selection of three sites close to 90th percentile
 - northern scenario zones: dry land agriculture & paddy rice
 - + separate actions for dry land agriculture and paddy rice
 - Yangtze River and South China: multi crop
 - + 1 action for dry land agriculture and paddy rice combined \rightarrow multi crop

Organic matter content in top soil (0 -20 cm)

Overlay organic matter map and land use map

- <u>Northern scenario zones</u>: overlay of organic matter and land use dry land agriculture
- <u>Yangtze River Basin and South China</u>: overlay of organic matter and land use dry land agriculture + paddy rice

Land use	Scenario zone	calculated 90th percentile organic matter (%)	corresponding organic matter content class (%)
Dry land agriculture	Northeast China	1.4	1 - 2
	Northwest China	0.61	0.6 - 1
	North China	0.66	0.6 - 1
Multi crop	Yangtze River	1.08	1 - 2
	South China	1.04	1 - 2

Northern scenario zones + paddy rice \rightarrow not done yet

Groundwater scenarios: 90th percentile weather in each scenario zone

Actions for dry land agriculture in northern zones

- target: meteorological station with average rainfall for the zone
 - pre-selection of three meteorological stations
- combine three soil locations with three meteorological locations and take best combination
 - no scenario in Taiwan (political decision)
 - no scenario Qinghai-Tibet Plateau (no agriculture)
- 90th percentile weather: take 90th percentile FOCUS concentration

80th percentile weather in FOCUS groundwater scenarios

Run model for scenario (location includes 80th percentile of soil)

each location (80th percentile of soil):

- weather series of 20 years

- applications every year

Output model: 80th percentile yearly average leaching concentration at 1 m depth

80th percentile = 17th of 20 ranked values

90th percentile = mean of 18th and 19th of 20 ranked values

Groundwater scenarios: selected locations for dry land agriculture

Groundwater scenarios: selected locations for dry land agriculture

Selected locations with organic matter close to the 90th percentile and average annual rainfall of the corresponding scenario zone

Actions for paddy rice in northern zones and multi crop in Yangtze river basin and South China

- Target: 90th percentile annual percolation
 - Procedure finalised, not relevant for Ethiopia in this stage

